Respiratory Care Pocket Reference v2021.4

Scan me

By collaborators & with support from multiple institutions, including:

Oxygen Sources & Delivery Devices

(NC)	Car	 ula	
	(NC)		
	()		

Magal

Pros: Ubiquitous; commonly used up to 6LPM

Pros: ~High FiO_a; can be more comfortable than NC

Cons: Requires humidification if >4LPM (risk of epistaxis); no work of breathing

02: works with any pressure source via flow meter; FiO2 increases 2-4% per LPM; variable FiO delivery based on patient's minute ventilation & flow rate

Rebreather/ Facemask (NRB/FM)

Cons: Limited FiO, if high respiratory drive; no work of breathing support 0.: works with any pressure source via flow meter: simple FM 5-10 LPM (~Fi0. 35-50%); NRB 10-15 LPM (~FiO, 60-80%); enough flow to prevent bag collapse

High Flow Nasal Cannulae

Pros: High FiO, even with high minute ventilation; can titrate flow and FiO,; heated and humidified for comfort; may improve outcomes in acute hypoxemic respiratory failure compared to NIPPV or low-flow 0,; small amount positive pressure may help with recruitment; high flow = deadspace washout, may help with work of breathing Cons: Requires special device; consumes massive amounts of oxygen

0,: Requires high pressure/flow source; ~ >90% FiO, (variable with minute ventilation, entraining room air around cannulae) 3 types: 1) With blender to mix compressed air + 0₂; 2) With port/Venturi effect to entrain room air and mix with compressed 0, : or 3) Without blender.

Initial Settings: infant <1year = 8LPM; child 1-4 years = 10LPM; Child > 4 years = 20LPM; adolescents/adults = 40LPM flow and 100% Fig.; can titrate flow and/or FiO_a (max flow depends on cannula size; up to 60 LPM for adults and 100% FiO_a) if tolerated and 0, source adequate.

Pros: May avoid intubation in some pts (COPD, cardiogenic pulmonary edema, upper airway obstruction) by decreasing work of breathing and adding PEEP

Cons: Risk of infectious aerosol generation (possibly less if helmet NIPPV); risk of

invasive Ventilatio (NIV) or Positive Pressure Ventilation (NIPPV)

aspiration if patient not alert / unable to protect airway or if inspiratory pressures >20cm H₀0; pt must be alert enough to remove mask if uncomfortable; skin breakdown with prolonged use; confusing terminology: IPAP (inspiratory pressure); EPAP (expiratory pressure = PEEP); PS of "5 over 5" is the same as PS delta 5 over 5, is the same as IPAP 10/EPAP 5

02: requires high pressure/flow source to achieve high Fi02

Initial Settings: PS (DP) 5/PEEP (EPAP) 5-10; titrate DP up to 15 to reduce inspiratory work; use higher initial IPAP with obese pts; higher pressures may require sedation in peds

"BiPAP" Continuous

Trade name

Positive

Airway

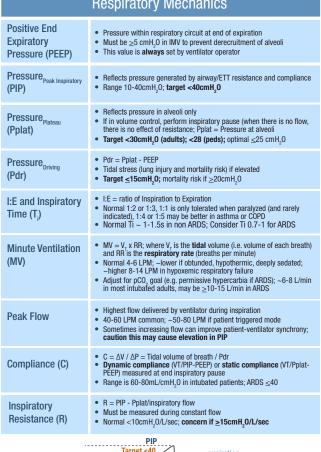
Pressure

(CPAP)

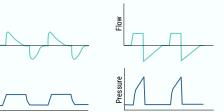
Pros: Delivered via face mask or multiple other potential interfaces to splint open the upper airway, increase lung volume & intrathoracic pressure

Cons: Prolonged use is uncomfortable & causes skin breakdown; limited unloading of inspiratory muscles or provide complete respiratory support

O.: requires high flow/pressure source to achieve high Fig.


Initial Settings (adults/peds): CPAP or PEEP 5-10; adults: titrate as needed up to 15; peds ≤12; higher pressures may require sedation in peds

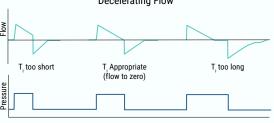
Respiratory Mechanics


Choosing a Ventilator Mode

- Assist Control (AC) Volume Mode is default for non-spontaneous breathing patients or ARDS
- AC Pressure Mode & Dual Modes can be used for non-spontaneous breathing patients or ARDS
- PSV if spontaneous breathing and non-ARDS: SIMV and APRV have no data to support regular use

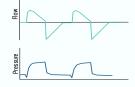
Volume Control

	volume Control
Other Names	AC-VC; Assist Control Volume Control; VCV; \sim CMV (controlled mandatory ventilation = all modes with RR and fixed T $_i$); (S)CMV
Controlled Variables	${\bf RR, V_\tau}, {\rm PEEP, FiO_2, Trigger~level}, {\rm Flow~pattern, 1:E}$ (either directly or via peak flow, ${\bf T_i}$ settings)
Initial Settings Adult & Pediatric (More details on next page)	1. Set V _T at 6-8 mL/kg predicted body weight (PBW) 2. Set RR: <u>Adults</u> : set at pt's most recent RR (do not exceed 35); <u>Peds</u> : set at most recent RR (do not exceed 60 bpm in infants, 40 bpm in toddlers/preschoolers, 35 bpm in school-aged children or adolescents) 3. Set T ₁ : <u>Adults</u> 0.70-1 sec; <u>Peds</u> based on RR to maintain a minimum ratio of 1:2 4. Select FiO ₂ and PEEP (use ARDSnet grid if applicable; see next page
Flow	Square wave/constant/fixed; or Variable/decreasing ramp (potentially more physiologic); 40LPM healthy, 60LPM ARDS
l:E	I:E of 1:2 or 1:3 is best for most patients; Normal Ti ~ 1-1.5s in non ARDS patients; Consider Ti 0.7-1 for ARDS I:E of 1:1 or >1:1 associated with PEEPi, decreased cardiac output (CO) and oxygen delivery Process for setting I:E may vary by ventilator make; commonly by changing Ti, inspiratory flow and flow pattern
Pros	Guaranteed MV regardless of changing respiratory system mechanics; precise control of $\mathbf{V}_{\mathbf{T}}$ to limit volutrauma
Cons	Will overcome high resistance or compliance to deliver set V, (must set pressure limit & alarm); breath stacking (i.e. next breath delivered before exhalation of prior breath); fixed flow and T, can increase asynchrony when V, & flow demand $>$ vent settings
Breath Initiation	Control: Time trigger (60s/set RR): fixed VE Assist: Pt effort triggers full breath at set $T_{\rm i}$, $V_{\rm T}$, and flow rate
If No Patient Trigger	Delivers full set $V_{\scriptscriptstyle T}$ at set rate (i.e. guaranteed VE)
Breath Termination	$\label{eq:time-cycled} \textbf{Time-cycled} = \text{breath-ends at set } T_i; \text{ alarms if } V_\tau \text{ not achieved; flow is set, breath-ends once } V_\tau \text{ delivered} \\ \textbf{Pressure-cycled} = \text{safety mechanism; breath-termination-by-clinician-set-high-pressure-limit (10-15cmH20>avg-PIP); "pop-off"} \\ \textbf{Time-cycled} = \text{safety-mechanism; breath-termination-by-clinician-set-high-pressure-limit (10-15cmH20>avg-PIP); "pop-off"} \\ \textbf{Time-cycled} = \text{safety-cycled} \\ Time-c$
Notes	Inspiratory pause (~0.3s) can be built into each breath, will increase mean airway pressure; can measure Pplat


• Alarms: high pressure 5-10 > PIP, VE 50% above+below actual

• Trigger: 2-5 Lpm for flow; -2 cmH₂0 for pressure

Pressure Control


Other Names	AC-PC; Assist Control Pressure Control; ~CMV - PC
Controlled Variables	RR, Pinsp (or PC level), PEEP, FiO $_2$, Flow trigger, Rise time, I:E (set directly or by Inspiratory time, $\rm T_i)$
Initial Settings Adult & Pediatric (More details on next card)	1. Set inspiratory pressure (Pinsp) at 8-20cmH ₂ O, or set equal to previous Pdr, Pplt or ~1/2 of PIP if transitioning from VC (goal 6-8 m:/ Kg PBW 2. Set RR: Adults: set at pt's most recent RR (do not exceed 35); Peds: set at most recent RR (do not exceed 60 bpm in infants, 40 bpm in toddlers/preschoolers, 35 bpm in school-aged children or adolescents) 3. Set T ₁ : Adults: 0.70-0.85 sec; Peds based on RR to maintain a minimum ratio of 1:2 4. Select FiO ₂ & PEEP (use ARDSnet grid if applicable; see next page
Flow	Variable/decreasing ramp (potentially more physiologic) Peak Flow determined by: 1) Pinsp level, 2) R, 3) T, (shorter = more flow), 4) Pressure rise time (↓ Rise time → ↑ Peak flow), 5. Pt effort (↑ Effort → ↑ Peak flow)
l:E	I:E of 1:2 or 1:3 is best for most patients; Ti 0.7-1s for ARDS I:E 1:1 or >1:1 associated with PEEPi, decreased C0 & 0 ₂ delivery Determined by set T ₁ and RR (Volume and flow variable)
Pros	 Avoids high PIPs Variable flow (↑ pt effort causes ↑flow to maintain constant airway pressure = potentially better synchrony: ↑ pt effort → ↑ flow and ↑ V₁) "Automated/active expiratory valves" (transiently opens expiratory valve to vent off pressure with coughing, asynchrony); ↑ comfort and ↓ barotrauma risk
Cons	$\rm V_{\rm J}$ and MV not guaranteed; $\rm V_{\rm J}$ determined by C and R (might be bigger or smaller than is optimal)
Breath Initiation	Control: Time trigger - (60s/set RR) Assist: Pt trigger delivers Pinsp for inspiratory time cycle
If No Patient Trigger	Delivers Pinsp at set rate and T _i
Breath Termination	Time cycled = I:E or T_i set, breath ends at set time
Notes	Pplat is the set inspiratory pressure Alarms: high pressure 5-10 > PIP, VE 50% above+below actual Trigger: 2-5 Lpm for flow; -2 cmH ₂ 0 for pressure Unlike in VC, in PC the ventilator cannot compensate for volume lost to circuit compliance (i.e. V, delivered may be less than V, measured and my be significant especially in pediatrics)

Decelerating Flow

Pressure Support

Other Names	PS; PSV; Spontaneous
Controlled Variables	Pinsp, PEEP, FiO ₂ , Flow trigger, Rise time
Initial Setting Adult & Pediatric (More details on next card)	Use for Spontaneous Breathing Trial (SBT): 1. Set Pinsp 5-10 cmH ₂ 0 accounting for ETT size (3.0/3.5mm = 10 cmH ₂ 0; 4.0/4.5mm = 8 cmH ₂ 0; \geq 5mm = 5 cmH ₂ 0 2. Set PEEP 5-8 cmH ₂ 0 3. Fi0 ₂ \leq 0.40 (Peds) or \leq 0.50 (Adults) per SBT initiation criteria
Flow	Decreasing ramp (potentially more physiologic) Determined by 1) PS level; 2) Airway resistance (Raw); 3), Rise time (↑ Rise time> ↓ Peak flow) and 4) Pt effort
l:E	Determined by patient effort and flow termination ("E $_{\!\!\!\text{sens}}$ " - see below "Breath Termination")
Pros	Synchrony: allows pt to determine peak flow, $\mathbf{V}_{_{\mathrm{T}}},$ and $\mathbf{T}_{_{\mathrm{I}}}$
Cons	No guaranteed MV; V₁ determined by pt (big or small); high PS and/or low E₂₂₂₂ in COPD can incr air-trapping asynchrony; muscle weakness/fatigue: ↓ effort or ability to sustain effort> hypoventilation, ↑ fatigue
Breath Initiation	Pt flow or pressure triggered; Flow (3-5LPM) more sensitive than pressure trigger ($\sim\!$ 2cmH $_{\!_2}$ O)
If No Patient Trigger	Apnea (Most vents will have backup rate; all have alarm)
Breath Termination	Flow cycled: Delivers Pinsp until flow drops to predetermined % of initial peak flow ~Esens (Standard setting ~25%; ~40-50% if obstructive pulmonary disease to prevent air trapping)
Notes	PS mode is not necessarily equivalent to a spontaneous breathing trial (SBT); Consider additional 3-5 cmH,0 of delta pressure if HME used

Dual (Control) Mode

Other Names & Function	
Pros	

- · Pressure regulated volume control (PRVC); VC+, AutoFlow ~PC with a target V_τ & variable Pinsp (Δ1-3cmH20 per breath) to
- meet goal V, despite changing C and R; _ likelihood of hypo/hyperventilation associated with PC.
 - If R or C changes, Pinsp automatically adjusts to keep target V_T Active expiratory valve (unlike AC-VC) promotes synchrony
- C & R can change significantly without notification
- Vent can't discern if V_x>target is due to ↑ pt effort or ↑ C; vent response to both = \(\) Pinsp; Can lead to closed-loop "runaway" (\(\) Pinsp--> ↑ Pt Effort--> ↓ Pinsp)= ↑ Pt work; must carefully set alarms

Respira	atory Care, Setup, & Monitoring
Ventilator Setup (prior to connecting patients)	Inspect all equipment for cleanliness or damage Review circuit orientation, filters, & heat & humidification system Ensure gas supply connected Perform machine self-test with new patient and per manufacture (ensure leak test included) Confirm initial settings and alarms
Ventilator Performance	Perform Full Status Check q4h: (PIP, Pplat, V, , FiO,, auto-PEEP, Alarms, SpO ₂ , ETCO ₂ in addition to routine ICU monitoring) Evaluate vent & patient within ~1h of ventilator settings changes Wipe down ventilator with approved disinfection qShift
Pulmonary, Endotracheal Tube & Circuit Hygiene	Check cuff pressure and auscultate q12h to avoid over-inflation/leak (<25 cmH,0); consider 'minimal occluding volume' in peds Check inflation of pilot balloon to ensure it remains inflated Reposition & secure endotracheal tube with skin checks q12h Check ventilator circuit qShiff for moisture accumulation (drainage); change circuit only if damaged or gross contamination (VAP PPx) Head of bed 30 degrees elevated for pneumonia prophylaxis (VAP PPx) Oral hygiene with mouthwash & suctioning TID (VAP PPx) Consider continuous subglottic suctioning or q12h oropharyngeal suctioning (VAP PPx)
Filters	All external filters should be inspected ≥daily (and after nebs) Replace <u>viral filters</u> as frequently as supplies allow in accord with the manufacturer's recommendations or if damaged/soiled (may last >1 week) For turbine & compressor ventilators, <u>external inlet filters & fan filters</u> must be cleaned at least monthly. For ventilators that allow, bacterial/viral filters should be placed proximal to external intake filters Minimize instrumental/filter deadspace
Heat & Humidification	Active system: must use distilled or sterile water (~>500mL daily) to avoid infectious risk and device damage; can be made on site or purchased; check H2O supply q12-24h Passive heat moisture exchanger (HME): Only some HME include pathogen filter capability; Many manufacturers suggest change q24h, but studies show that an unsoiled HME in some circumstances can be used for 3-7 days. Nebs decrease lifespan (and must be given via bypass or with HME removed from circuit). Monitor for signs of an increased resistance (e.g. increase in PIP but no change in Pplat, or a prolonged exp flow). Ensure at least 28-30 mgH2O/L efficiency
Respiratory Specific Monitoring	Continuous pulse oximetry, if unable then spot check as frequently as possible Continuous capnography, if unable then spot check as frequently as possible, especially after major ventilator settings changes Auscultation performed routinely with checks Skin/Mucosal Assessments qShift
Contingency Planning	Ensure manual (i.e. bag valve resuscitator) ventilation device is operational and at beside along with a facemask and PEEP valve
the medical condition presented. It	to be educational in nature and is not a substitute for clinical decision making based on is intended to serve as an introduction to terminology. It is the responsibility of the user therein is current and accurate by using published references. This card is a collaborative

to ensure all information contained herein is current and accurate by using published references. This card is a collaborative effort by representatives of multiple academic medical centers

When to Use LPV? All ABOS patients and most initiated non-ABOS patients, will benefit from LPV, bough there are some instances where departures from LPV are patiented (i.e. mechanical vehiclants = 24%).	Lun	g-Protective Ventilation (LPV)	١,	Adjunctive Therapies for ARDS
2) Bilateral opacities on CKR or Chest CT or chest US 3) PF-5300 or SF-5 13 for style at 15 cmtl p PEPP 4) Not fully explained by cardiac failure or fluid overload on exam Pediatric ARDS (pARDS) Definition 1) Acute (within 1 week of new symptoms or insult) 2) Infiltrate(s) on chest imaging consistent with acute lung disease 3) Non-Invasive Ventilation: Dryspen Index (00) ±5 or Dryspen Saturation Index (06) ±5 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 4) Non-Invasive Ventilation: Dryspen Index (00) ±6 or Dryspen Saturation Index (06) ±5 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 2 or Non-Invasive Ventilation: Dryspen Index (00) ±6 or Dryspen Saturation Index (06) ±6 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardiac failure or fluid overload on exam; exclude perinatal related lung disease 3 or Not fully explained by cardi		from LPV, though there are some instances where departures from LPV are justified (i.e. mechanical ventilation ≤24h). ARDS Berlin Definition for Adult ARDS with Kigali Modification		Management tolerated with goal of euvolemia • FACTT Trial of conservative vs. liberal fluid strategy improved oxygenation, more ve
1) Acute (within 1 week of new symptoms or insult) 2) Infiltrate(s) on chest imaging consistent with acute lung disease 3) Non-Invasive Vertilisation: PF 3:00 or SF 2:64 with CPAP 5:5 cmH, 0 Invasive Vertilisation: Oxygen Index (0) 2-4 or Oxygen Saturation Index (05) 2-5 4) Nort fully explained by cardiac failure or fluid overload on exam; exclude perinatal related fung disease Severity Grading of ARDS (Correct for altitude) Acute Respiratory Distress Syndrome (ARDS) Severity Grading of ARDS (Correct for altitude) Adult PF 19:02 - 200, -27% mortality 01-47-9; OSS 57-42 Moderale PF 10:020, -22% mortality 01-47-9; OSS 57-42 Moderale PF 10:020, -22% mortality 01-47-9; OSS 57-42 Severe PF: <100, -45% mortality 01-47-9; OSS 57-42 FP 200-300, -27% mo		2) Bilateral opacities on CXR or Chest CT or chest US 3) P.F ≤300 or S.F <315 with or without ≥5 cmH ₂ 0 PEEP 4) Not fully explained by cardiac failure or fluid overload on exam	ŀ	Choice of agent (each with pros & cons, may)
Acute Respiratory Distress Syndrome (ARDS) Severity Grading of ARDS (Correct for attitude) Mild PF 200-300, -27% mortality Ob-16; OSI-57-4 Moderate PF: 100, -04% mortality Ob-16; OSI-57-4 Moderate PF: 100-200, -32% mortality Ob-16; OSI-57-4 Moderate PF: 100-300, -32% mortality Ob-16; OSI-57-12 If PF-F < 150 and worsening ARDS, consider adjunctive therapies PF: 150 and worsening ARDS, consider adjunctive therapies Set initial V, 6 mL/kg PBW/4C-VC) • Measure height & calculate predicted body weight (PBW) (See table) • Set initial V, 6 mL/kg PBW/4C-VC) • Check V, at least every 4h (PC or if weaning PS mode) • Titrate V, by pressure goals & pH (below) • If pH < 7.15 consider increase V, toward 8mL/kg regardless of Pplat PEEP) - q-4-6h and after each change in PEEP or V, which is septiment of the period o		Acute (within 1 week of new symptoms or insult) Infiltrate(s) on chest imaging consistent with acute lung disease Non-Invasive Ventilation: P:F ≤300 or S:F ≤264 with CPAP ≤5 cmH₀0	ŀ	 <u>ACURASYS Trial</u> showed mortality benefit; <u>R</u> Short term paralysis eliminates work of breat
Adult ERSpiratory Distress Syndrome (ARDS) Adult EP F 200-300, −27% mortality Peds: 01 & 08 01 4-7.9; 0815-7.4 Moderate P.F. 100-200, −23% mortality 01 4-7.9; 0815-7.4 Moderate P.F. 100-200, −23% mortality 01-16; 0817.5-12.2 Severe P.F. +100-200, −23% mortality 01-16; 0817.5-12.2 If P.F. +150 and worsening ARDS, consider adjunctive therapies If P.F. +150 and worsening ARDS, consider adjunctive therapies		Index (OSI) ≥5 4) Not fully explained by cardiac failure or fluid overload on exam;	į	Prone Positioning Prone patient for ~16h at a time, continue remaining <10 cmH ₂ 0 while patient is supine
Moderate P.F. 100-200, -32% mortality Severe P.F. 2100, -45% mortality Ola-16, 9. GSI 7.5-12.2 Ola-16, 9. GSI	Distress Syndrome	Adult; P:F (Pa02 ÷ Fi02) Peds; 0I & OSI	ŀ	If unable to prone, could put less diseased lu
Set initial V, 6 mL/kg PBWv(AC-VC) Check V, at least every 4h (PC or if weaning PS mode) Titrate V, by pressure goals & pH (below) If pH < 7.15 consider increase V, toward 8mL/kg regardless of Pplat Check Pplat (0.5s inspiratory pause) & Pdr (deltaP=Vt/C _{Rs} = Pplat-PEEP) ~q4-6h and after each change in PEEP or V, If adult Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg Plat<30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decreasing V, by 0.5-1 cc/kg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pplat-Valkg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>28 Pplat-Valkg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>28 Pplat-Valkg toward ~4 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>28 Pediatrics), optimize sedation (+paralysis) and decrease V, in 1 mL/kg If Pplat <30 cmH,0 (>3 Pplat Valkg toward Valkg toward Valkg toward		Severe PF: <100, ~45% mortality 0I>16; 0SI>12.3	;	Vasodilator • Inhaled Prostacyclin Initial Dose: 50 ng/kg min); should be weaned (10 ng/kg/min incre
PEEP) ~q4-6h and after each change in PEEP or V _T Males = 50 + 2.3 [height (inches) - 60]	(Goal 4-6 mL/Kg	 Set initial V_τ 6 mL/kg PBWv(AC-VC) Check V_τ at least every 4h (PC or if weaning PS mode) Titrate V_τ by pressure goals & pH (below) 	7	increments q30min) to avoid potential hemor • Caution if reduced left ventricular function, p <50, or anticoagulation
(Adults Goals: Pplat<30 cmH₂0 and Pdr <15 cmH₂0) (Pediatric Goal: Pplat<28 cmH₂0 and Pdr <25 cmH₂0 and Pdr <15 cmH₂0) (Pediatric Goal: Pplat<28 cmH₂0 and Pdr <15 cmH₂0 (Pediatric Goal: Pplat<28 cmH₂0 and Pdr <15 cmH₂0 (Pediatric Goal: Pplat<28 cmH₂0 (Pediatric Goal: Pplat<29 cm H₂0 and V₂ <6 mL/kg, increase V₂ to 6 mL/kg (If Pplat <25 cm H₂0 and V₂ <6 mL/kg, increase V₂ to 6 mL/kg (If Pplat <25 cm H₂0 and V₂ <6 mL/kg, increase V₂ to 6 mL/kg (If Pplat <25 cm H₂0 and V₂ <6 mL/kg, increase V₂ to 6 mL/kg (If Pplat <25 cm H₂0 and V₂ <6 mL/kg t/m Set Ra at ~pre-intubation RR don't exceed ~35 breaths/minute (Adults) Set RR at ~pre-intubation RR don't exceed ~35 breaths/minute (Adults) Set Ti 0.70-0.85 sec (may be longer if low RR) (avoid Ti <0.70 sec) When changing V₂ adjust RR to keep target VE by goal pH (~8-12 L/min in acute ARDS) Consider lower RR if evidence of obstructive ventilatory defect Increase RR if pH <7.30 and decrease RR if pH >7.45 (Engrative Spot May to 6 mL/kg t/m Set Ra at ~pre-intubation RR don't exceed ~35 breaths/minute (Adults) Set Ti 0.70-0.85 sec (may be longer if low RR) (avoid Ti <0.70 sec) When changing V₂ adjust RR to keep target VE by goal pH (~8-12 L/min in acute ARDS) Consider lower RR if evidence of obstructive ventilatory defect Increase RR if pH <7.30 and decrease RR if pH >7.45 (Link to source data)	Pressures		Ŀ	
Pdr <15 cmH $_2$ 0)	(ľ.	
Pediatric Goal: Polat<28 cmH ₂ 0		cannot be addressed pharmacologically, consider increase V _T in 1 mL/	ץ	58" (147cm) 40.9/45.4 kg 164/182 205/227 245/272
Respiratory Rate (RR) & Inspiratory Time (Ti) Set RR at ~pre-intubation RR don't exceed ~35 breaths/minute (Adults) Set Ti 0.70-0.85 sec (may be longer if low RR) (avoid Ti <0.70 sec) • When changing V ₁₁ , adjust RR to keep target VE by goal pH (~8-12 L/min in acute ARDS) • Consider lower RR if evidence of obstructive ventilatory defect • Increase RR if pH <7.30 and decrease RR if pH >7.45 • Keep duration of inspiration < expiration.	(62" (157cm) 50.1/54.6 kg 200/218 251/273 301/328
min in acute ARDS) Consider lower RR if evidence of obstructive ventilatory defect Imputed Values for P:F Ratio Increase RR if pH <7.30 and decrease RR if pH >7.45 Veen duration of inspiration c expiration Veen duration of inspiration c expiration	Rate (RR) &	Set Ti 0.70-0.85 sec (may be longer if low RR) (avoid Ti <0.70 sec)		66" (168cm) 59.3/63.8 kg 237/255 297/319 356/383 68" (173cm) 63.9/68.4 kg 256/274 320/342 383/410
(Goal based on pH) SpO₂ Values Corresponding to P:F <150:		min in acute ARDS) Consider lower RR if evidence of obstructive ventilatory defect		·

Start at 5 cmH_aO PEEP for 2min, if stable hemodynamics, then Select one of the following PEEP / Fi0, titration strategies for goal Pa0, 55-80 mmHg or Sp0, 88-95% (In ARDS, PEEP usually PEEP & Fi02 (Goal to minimize)

Lower PEEP/higher FiO. Strategy (*Default - May consider if low Pdr or pediatrics)

0.3 0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.7 0.8 0.9 0.9 0.9

5 5 8 8 10 10 10 12 14 14 14 16 18

Higher PEEP/lower FiO. Strategy (May consider if Pa02/FiO2 is <100, high Pdr, or BMI>40)

0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.5 0.5 - 0.8 0.8 0.9 1.0

PEEP 5 8 10 12 14 16 16 18 20 22 22 22

When ↑ PEEP, if Pplat ↑ more than Δ PEEP, think over-distensic

101		patoa . ao ₂	2	patoa	
lly	96%	82 mmHg	≥0.6	≤137	
n	95%	76 mmHg	<u>≥</u> 0.5	<u>≤</u> 152	
	94%	71 mmHg	<u>≥</u> 0.5	<u>≤</u> 142	
	93%	67 mmHg	≥0.5	≤134	
1.0 18-24	92%	64 mmHg	≥0.5	≤128	
10-24	91%	61 mmHg	<u>≥</u> 0.4	≤153	
1.0	90%	59 mmHg	≥0.4	<u>≤</u> 148	
24	<89%	≤57 mmHg	≥0.4	≤150	

High Pressures, Desaturations & Dyssynchrony Adjunctive Therapies for ARDS Hypoxemia

Concentrate IV medications and consider diuresis once hemodynamically

fluid strategy improved oxygenation, more ventilator-free & ICU-free days, no

FACTT Trial of conservative vs. liberal fluid strategy showed conservative

Check adequate sedation, then consider paralysis no longer than needed

. Choice of agent (each with pros & cons, may vary by setting): cisatracurium,

. Monitor degree of paralysis with serial train-of-four (TOF) & wean as able

 Short term paralysis eliminates work of breathing and can be helpful to accurately assess respiratory mechanics & asynchronies associated w/ ARDS

Prone patient for ~16h at a time, continue proning until P:F >150 with PEEP

. If unable to prone, could put less diseased lung down to improve V/Q match

Inhaled Prostacyclin Initial Dose: 50 ng/kg/min PBW (range 10-50 ng/kg/

min): should be weaned (10 ng/kg/min increments g30min; once at 5ppm

Inhaled Nitric Oxide (iNO) Initial Dose: ~20ppm; should be weaned (5 ppm

Caution if reduced left ventricular function, pulmonary hemorrhage, platelets

6mL/Ka f/m 7mL/Ka f/m

286/318

319/350

351/382

383/414

415/447

447/479

480/511

245/272

328/355

356/383

383/410

411/438

8mL/Ka f/m

327/363

364/400

401/437

438/474

474/510

511/547

548/584

increased shock. However, no mortality benefit.

atracurium, rocuronium, pancuronium, or vecuronium

remaining <10 cmH₂0 while patient is supine for >4h

Measured Sp0 Imputed Pa0

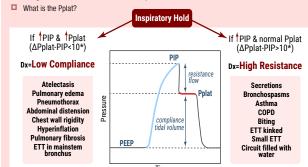
 Alternate with supine positioning which allows for patient care • Do not need special bed; manually proning requires a team

No data demonstrate mortality benefit with pulmonary vasodilators

consider wean by 1ppm) to avoid hemodynamic compromise

Additional LPV Reference Calculations

increments q30min) to avoid potential hemodynamic compromise


. ACURASYS Trial showed mortality benefit: ROSE Trial did not

General Considerations

- □ Is the ventilator set to FiO, 100% while you troubleshoot?
- Is the patient hemodynamically unstable? If so, consider pressors & urgent evaluation for pneumothorax or severe auto-PEEP.
- Is the ventilator circuit connected & set correctly?
- Are breath sounds bilateral? If unilateral, consider mainstem ETT, lobar collapse, atelectasis, and

High Pressures

- Is the patient agitated or asynchronous?
- Can a suction catheter pass easily through the endotracheal tube? If no, consider kinked tube. biting/bite block, secretions/suction, or replace ETT.

Troubleshooting low compliance: Decrease V_x & evaluate for breath stacking (auto-PEEP). Consider | PEEP or adjunct therapies for hypoxemia if decrease in PEEP causes desaturations.

Troubleshooting high resistance: Work outside (machine) to inside (alveoli); circuit problem, ETT kink/occlusion/biting, ETT obstructed/mainstem, large airway obstruction (mucous plug), small/ medium airway obstruction (bronchospasm); auscultation & passing a suction catheter can quickly eliminate many of these.

Desaturations

- Is the endotracheal tube in good position? (consider CXR)
- Is the pulse oximetry waveform good quality?
- □ Is there acute hypotension? Evaluate for tension pneumothorax, air trapping and pulmonary embolism
- Is the source of oxygen faulty or is there an air leak? Check each connection/element sequentially from source of oxygen to the patient.
- Are there concomitant pressure elevations? If so, see "High Pressures" (next column)
- Is P:F <150 in setting of worsening ARDS? If so, consider adjunct therapies (above).</p>
- Are there signs of infection? Consider ventilator-associated pneumonia.

Patient-Ventilator Dyssynchrony

- · Detect signs of dyssynchrony: coughing, paradoxical breathing, ventilator alarms (low tidal volumes or high pressures), breath stacking.
- Treat underlying causes: 1) Ineffective triggering (patient or ventilator); 2) Inappropriate triggering (patient inspires while ventilator expires); 3) Auto-triggering (non-respiratory muscle movement triggers ventilator); 4) Flow dyssynchrony (too fast or too slow)

General Approach

- Treat pain or anxiety if present
- If ineffective ventilator triggering change trigger sensitivity, decrease VT or pressure Increase V, to 8 mL/kg and increase flow rate if pressures allow. Consider change to
- decelerating flow delivery if setting available.
- If still dyssynchronous, paralyze patient (and sedate patient to RASS goal -5)

Discomfort & Delirium

Discomfort (pain, agitation, anxiety) & Delirium

- Ensure appropriate analgesia & sedation to minimize ICU/IMV duration & risk of long-term neuropsychiatric impact.
- Reassess every ≤4 hours using a standardized scale
- . Goal RASS -4 to 0 in intubated patients
- If RASS -4 tor -5 consider lightening sedation unless patient is paralyzed or dyssynchronous with ventilator.
- Target RASS -5 for paralyzed patients. Never paralyze without sedation
- Perform Daily Sedation Interruptions (DSIs) in non-paralyzed patients to reassess sedation & analgesia needs, which can guide weaning these medications.

Delirium: Prevention & treatment of delirium reduces mortality and ICU/IMV duration

- Screen every 12h using standardized tool (i.e. CAM-ICU)
- Treat delirium by addressing underlying causes (pain, agitation. anxiety, or physiologic derangements

Ventilator Weaning & Extubation

SBT Initiation Criteria (& Considerations)

- Patient likely to trigger ventilator and FiO. < 0.50 adults (< 0.40 for pediatrics) and PEEP <8</p>
- □ pH > 7.30. VE < 15 L/min</p>
- ~MAP > 60 mmHg (minimal pressors)
- ICP: non-labile and < 20 mmHg w/ CPP > 60 mmHg
- No MI in previous ~48hr

Veaning Strategies

- Once daily SBT PS delta 5-7 cmH₂0 if ETT size > 5 (8 cmH₂0 if ETT 4-4.5; 10 cmH₂0 if ETT 3-3.5) over PEEP 5-8 cmH 0 (2nd daily trial ok if failure sedation-related or due to transient issue)(Consider additional 3-5 cmH₂O of delta pressure if HME used)
- SBT x 30min ~probably as good as SBT x 2hr if <48h intubated</p>
- SBT x 2hr better predictor if intubated >48h
- ☐ If adult with <u>cardiogenic pulmonary edema risk</u>: Consider 15min T-piece (i.e. d/c PS & PEEP)
- RSBI (rapid Shallow Breathing Index) = f/V_{τ} is unreliable; <80 goal for extubation; sensitive, not specific (if > 105, good predictor of failure)
- Daily sedation interruption = faster extubation, shorter LOS

Extubation Criteria

- Have you fixed the original problem and no upcoming procedures?
- Adequate oxygenation? (PaO_a > ~60 on PEEP< 8 cmH_aO_b, FiO_a <0.50)</p>
- Adequate ventilation without excessive work of breathing? (ΔPaCO₂ ↑ of < 10 mmHg with</p> remaining pH > 7.30 during SBT)
- Secretions? (assess cough strength, suction frequency & secretion volume)
- Airway protection? (assess gag, spont cough and GCS)
- Assess risk of post-extubation airway obstruction:
- Consider cuff leak test if: intubation >6d, trauma, multiple intubations, prolonged prone, flat, volume overload, head/neck trauma, among others

Cuff Leak Test: 1. pt must be sedated (interaction with vent = incr PIP= incr leak = false reassurance): 2. Suction oropharynx: 3. Initiate AC-VC V- 8 mL/kg, RR 12, Ti; 1.5sec, Flow 50 LPM; 4. Measure expired V-; 5. Deflate cuff and wait 6 breaths: 6. Measure expired V- expired V-(goal is ↓ by >110mL in measure expired V₇); 7. Reinflate cuff

- Decrease aspiration risk by holding tube feeds for safe interval (~6-8h)
- Extubation criteria/goals for neuro patients may be different (e.g. visual tracking, swallowing, GCS>10. <40vo)
- Hemodynamics re-intubation of an unstable patient can be lethal